Symplectic dynamical low rank approximation of wave equations with random parameters
نویسندگان
چکیده
In this paper we propose a dynamical low-rank strategy for the approximation of second order wave equations with random parameters. The governing equation is rewritten in Hamiltonian form and the approximate solution is expanded over a set of 2S dynamical symplectic-orthogonal deterministic basis functions with timedependent stochastic coefficients. The reduced (low rank) dynamics is obtained by a symplectic projection of the governing Hamiltonian system onto the tangent space to the approximation manifold along the approximate trajectory. The proposed formulation is equivalent to recasting the governing Hamiltonian system in complex setting and looking for a dynamical low rank approximation in the low dimensional manifold of all complex-valued random fields with rank equal to S. Thanks to this equivalence, we are able to properly define the approximation manifold in the real setting, endow it with a differential structure and obtain a proper parametrization of its tangent space, in terms of orthogonal constraints on the dynamics of the deterministic modes. Finally, we recover the Symplectic Dynamically Orthogonal reduced order system for the evolution of both the stochastic coefficients and the deterministic basis of the approximate solution. This consists of a system of S deterministic PDEs coupled to a reduced Hamiltonian system of dimension 2S. As a result, the approximate solution preserves the mean Hamiltonian energy over the flow.
منابع مشابه
Dual Dynamically Orthogonal approximation of incompressible Navier Stokes equations with random boundary conditions
In this paper we propose a method for the strong imposition of random Dirichlet boundary conditions in the Dynamical Low Rank (DLR) approximation of parabolic PDEs and, in particular, incompressible Navier Stokes equations. We show that the DLR variational principle can be set in the constrained manifold of all S rank random fields with a prescribed value on the boundary, expressed in low rank ...
متن کاملDynamical Low-Rank Approximation
For the low rank approximation of time-dependent data matrices and of solutions to matrix differential equations, an increment-based computational approach is proposed and analyzed. In this method, the derivative is projected onto the tangent space of the manifold of rank-r matrices at the current approximation. With an appropriate decomposition of rank-r matrices and their tangent matrices, th...
متن کاملDynamical low-rank approximation
In low-rank approximation, separation of variables is used to reduce the amount of data in computations with high-dimensional functions. Such techniques have proved their value, e.g., in quantum mechanics and recommendation algorithms. It is also possible to fold a low-dimensional grid into a high-dimensional object, and use low-rank techniques to compress the data. Here, we consider low-rank t...
متن کاملEffective Equations of Motion for Quantum Systems
In many situations, one can approximate the behavior of a quantum system, i.e. a wave function subject to a partial differential equation, by effective classical equations which are ordinary differential equations. A general method and geometrical picture is developed and shown to agree with effective action results, commonly derived through path integration, for perturbations around a harmonic...
متن کاملSeismic Wave-Field Propagation Modelling using the Euler Method
Wave-field extrapolation based on solving the wave equation is an important step in seismic modeling and needs a high level of accuracy. It has been implemented through a various numerical methods such as finite difference method as the most popular and conventional one. Moreover, the main drawbacks of the finite difference method are the low level of accuracy and the numerical dispersion for l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017